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SUMMARY

The complete gravitational disturbing function
@ rn
R = m % r—,mpn(s)

n=2

is developed in the form

an (n—m)! . . )
R = m arntl Ko (rm)! anp(l) anh(l ) anq(e) Gnhj(e )

n,m,p,

h,q,)

. cos [(n—2p)w+ {n-2p+qg)M - (n-2h)w"
- (- 2R M+ m(0-0)]

where the functions F, H, G are polynomials. This form is
advantageous for conserving computer storage space, mak-
ing changes in the terms included in the disturbing function,
or including the luni-solar perturbations in the same com-
putation with perturbations due to anomalous variations of
the earth's gravitational field. A quasi-potential for the
solar radiation pressure effect is also developed for use in
equations of motion written in terms of Keplerian elements.
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A DEVELOPMENT OF THE LUNAR AND
SOLAR DISTURBING FUNCTIONS

FOR A CLOSE SATELLITE
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William M. Kaula
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INTRODUCTION

Mathematical developments of the gravitational effects of the sun
and moon on a close satellite have been made by Musen, Bailie, and Upton
(Reference 1) and by Kozai (Reference 2). The developments presented
herein were made as a result of attempts to adapt the foregoing develop-
ments to a form convenient in analyzing close satellite orbits for terres-
trial gravitational field variations along the lines of Reference 3. In Refer-
ence 3 the disturbing functions are expressed in osculating Keplerian ele-
ments for use in equations of motion in those terms {such as in Reference
4, page 147, or Reference 5, page 289).

GRAVITATIONAL DISTURBING FUNCTION

The disturbing function has the form (Reference 1, p. 3)

0

— . "
R =m P (8),
rtn"'l

n=2

where P (S) is the Legendre polynomial of S, the cosine of the angle be-
tweenthe positionvectors of the satellite and the disturbing body with respect
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to the earth, and where the parameters of the disturbing body are de-
signated by asterisks (a", e*, etc. ).

We define

» n
o mr
Ry = 27 Pa(S)

And by the addition theorem (from any text on spherical harmonics)

. om*r" . . . (n-m)!
R, = _en+l P,(sin 3) P (sin 87) + 2 [ m
. an(sin $) an(sin §")(cos ma cos ma' + sin ma sin ma*)| , (1)

where P_ _(sin 8) is the associated Legendre polynomial of sin 8. In Equa-
tion 1, set

m m‘ (n-m)! . * -
A, = RYTL ey P .(sin &) cos ma
and
Bm _ m* (n-m)! P (si 5') sin ma® (2)
n rcn+1 Km (n+m)! nm sin !

where Ko = 1; Km=2, m# 0.

We apply to Equation 1 the same development as that given in Equations
7 through 18 of Reference 3:

a1 (n-m) even
R = @ E E F (1) " cos [(n-—2p)u + mQ]
*J(n-m) odd
__(n-m) even

+ sin [(n— 2plu + mQ] , (3)

Nl(n-m) odd

where (from Equation 19, Reference 3)
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- 1 ) m
F . (i) = > (2n- 2t)! cip® ™ 2:)12 : cos®i
P - t!(n-t)!(n—m_zt)!2(2n-2c, _ .
2 : n-m-2t+s m- s
. ( >< > (_1)((‘-'1(2
¢ p-t-c

[

in which k is the integral part of (n-m)/2; t is summed from 0 to the
lesser of p or k; s is summed from 0 to m; and ¢ is summed over all
values making the binomial coefficients non-zero.

By applying to Equation 2 the same development as that in Reference 3,
we have

. n (n-m) even ~
m m (n-m)! E : - cos . .
An = 3 Kn (n+m! anh(l ) [sin] [(n- 2h)u + mﬂ] ;
h=0 (n-m) odd
> (4)
. ( ) ] . ~(n-m) even
mo_ m n-m! 2 : » sin _ . .
Bn = r*3 Km (n+m)! anh(l ) l:-cos] [(n 2h)u” + mQ ]
h=0 (n-m) odd P

Combining Equations 3 and 4, we have

r .

m=0 p=0 h=0

- cos [(n—2h)u‘ + mQ'] + sin [(n—2p)u + mQ] sin [(n— 2h)u* + mQ']}

"l,,ilZKm %:% anp(i)Z F._,(i*) cos [(n-2p)u~ (n-2h)u* + m(@Q-0)].
‘ | = (5)

n=0 p=
Substituting n = 2 in Equation 5 yields the same expressions given as Types
I through V, pages 5-6, Reference 1, and n = 3 as Types VI through XIII,
pages 6-9, Reference l. Since terms of index {(m,p,h) = (o,p,h) will be
equal to terms of index (o, n-p, n-h) in Equation 5 above, in R there will
be a total of (n+ N3-1 [(n+ 1)2/2] terms, where 1 [(n+ 1)2/2] is the in-
tegral part of (n+ 12/2.

To develop the disturbing function in terms of the mean anomaly of the
perturbed body, Hansen's function

n,(n-2p)
(n-2p+q) €

(Reference 4, pages 44-46; Reference 6, page 256) may be used.
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The coefficient of cos [(n- 2p)w + (n~2p+q)M - (n-2h)u* + m(Q-Q‘)] is

, (n-2p)
a"H (e) = a"x" ! p(e) . (6)
npq (n-2p+q)

The only terms likely to be of significance are those of long perieod,
n-2p+q= 0. An integration utilizing the true anomaly in a manner simi-
lar to Equations 23 and 24 of Reference 3 results in an infinite series which
does not converge for large eccentricities. However, Hansen's function
reduces to a fairly compact form:

(n-2p)
X’ (=200

a"(-ﬁ)(n-zr") 2n+1-2p’ n+1 2p"+1 52k
= (1 + ,82)("+1) n-2p' +k ' (7)
n-2p’ k k k

k

aanp(Zp-n)(e)

where

and

In terms of the mean anomaly of the disturbing body, for the coefficient of
the term cos [(n— 2p)u -~ (n~2h)w* ~ (n=-2h+ M + m(Q-—Q‘)J we have

1 -(n+1),(n-2h)

a‘n+1 Gnhj(e‘) = a‘ﬂ"‘l x(n-2h+_]) (e ) (8)

for the short period terms, of which the form programmed is that given on
pages 8-9 of Reference 3 and page 256 of Reference 6; and

1 G )y = 1 h-l n-1 2d+n-2h’ o* 2d+n-2h'
atntl nhj(e ) = 21 Z , (—2> (9)
m2 2d+n-2h d

a"mtl(1-e"2) FP

for the long period terms. Combining Equations 5, 6 or 7, and 8 or 9 finally
yields

9¢11-d NL
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_ . a® (n-m)! . .
Bn = m Y Z Ko Ty T Z anp(l) hZ anh(l ) Z anq(e)
=O

mn=0 p=0 q= -

Z Gnhj(e‘) cos [(n—Zp)w+ (n-2p+g)M

j=-®
= (n-2hw" = (n-2h+ M + m(Q-0%)] . (10)

In Equation 10, R, is equivalent to Types afl; through al);, on pages 12-

16 of Reference l; and R; to Types afl; through all;; on pages 16-24 of
Reference 1. For practical purposes only the long period terms n-2p+qg=0
are significant, in which case the summation with respect to q can be omitted
and an(2p-n)(e) taken from Equation 7. Considering only the long period
terms,

n n

n * a“ (n—m)! )
Rn - a‘“”Z m m ; Fﬂmp(l) an(2p-n)(e)

n=0 p=0

. Z anh(i*) Z Gnhj(e') cos [(n—2p)w— (n~2h)w*

h=0 j=-o

- (n-2h+ HM* + m(Q-07)] . (11)

In Equation 11, R, is equivalent to al[Q]; through a[Q]g on pages 25-27 of
Reference 1, and to the disturbing function of Reference 2; R; is equivalent
to a[f)], through alQ];; on pages 27-31 of Reference 1. A single term of
R, is conveniently abbreviated as:

m*a® (n=-m)!

Bamphj = oodd “m (ny oyt Frmp () Hopopony(e) Frpp(37)
C Gopi(e”) Typopjle, ot M7, 0,07 (12)
The quantities T;mphj, Tnmphj’ Trllmphj can be defined in the same manner as

the S;mpq, etc. on page 10 of Reference 3; i.e., primes denote derivatives
with respect to the argument, and overbars integrals with respect to time.
The Tnmphj functions can be used with anp(i), an(?p-n)(e) and their de-

rivatives, and with F__,(i*) and G_,.(e®), to obtain the variations of the
nmh nhj
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Keplerian elements in a manner similar to that applied with the harmonic
terms of the terrestrial gravitational field in Reference 3. For example,
the variation of the node due to a particular term R, .,; given by Equation
12 is

Km(n -m)! m‘anh(i.) Gnhj(e')

AQnmp}:j =

(n+m)! a*ntl

n-9 aan (1) " - -
a 1 an(Zp-n)(e) Tnmphj(w’ w', M, 0,00

(13)
2

nyl-e® sin 1

All the significant first order lunar-solar effects thus can be obtained by
using the disturbing function given by Equation 11l in the equations of motion
(Reference 4, page 147; Reference 5, page 289) and integrating with respect
to time. This procedure is obviously advantageous when we desire to con-
serve programming time or computer storage space, since all the lunar-
solar perturbations can be programmed as a single "'nest of DO-loops' and
the same instructions are used for every term, with only the values of the
subscripts n,m,p,h,j changed. It also is convenient to alter the number of
terms to be included, since this change can be made by changing the range
of values over which the subscripts n,m,p,h,j are to be cycled in their re-
spective "DO-loops." Finally, it is a convenient form to include in the same
orbit computation with terrestrial gravitational effects, since the forms of
the equations, such as Equation 13, are very similar, and the subroutines
required to obtain F__ (i*), G_,; (%), Fomp (1) aanp(i)/Bi are exactly
the same as for the terrestrial gravitational effects, while an(zp_n)(e) and
Tnmphj and their derivatives are very similar to an(2p-n)(e) and S,..4 and
their derivatives. A subroutine has been written computing the luni-solar
secular effects plus all periodic terms of amplitude greater than a minimum
specified in the input, This program requires only 943 spaces of core stor-
age, by utilizing subroutines for F“‘“P(i) » G, ,(e) and their derivatives
which are also required for terrestrial gravitational effects.

RADIATION PRESSURE DISTURBING FUNCTION

If any force affecting an orbit can be expressed as the gradient
of a scalar, then this effect can be represented by a disturbing potential R.
This is true for radiation pressure if the shadow effect is neglected, since
the radiation pressure can be represented with negligible error as the gra-
dient of Rp = FX, F <0, where X is the coordinate of the satellite in an

9ZIT-d NL
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earth-centered system with the X axis pointed toward the sun. To obtain
Rp in a coordinate system referred to the satellite's own orbit, apply the
appropriate rotation matrices to q = {r cos f, r sin f, O}

Bp = F {1,0,0} Ry(\") By(e) Ry(-0) R (-i) Ry(-o) g

= FJ.Rquy

(14)

where A’ is the true longitude of the sun, € is the inclination of the ecliptic,
and the rotation matrices R, (El.) are defined in Reference 3, pages 19-21.
By multiplying out Equation 14, combining terms by appropriate transfor-
mation of the inclination functions, and integrating with respect to M we ob-

tain the long period part of Rp:

— 3 1 .
Ry = -F ;e {+ cos? %‘sin2 %‘cos (w+ O+ X))

+ cos % cos? cos (w+ O - 2"

po| M

cos (w-0+ ")

ro|
(¢}
(=]
w
DM

+ sin

cos (w=- 0«2

+
»
i
=]
N[ -
]
¥
=]
[NCTRLY

- % sin i sin € cos (w+ A")
1 .. . .
+ 5 sin i sin € cos (w=-A) . (15)

The ﬁp from Equation 15 may be used in the equations of motion (Reference
4, page 147; Reference 5, page 289) to obtain the same results as those in
Reference 7.

If the shadow is taken into account, it is impossible to devise a quasi-
potential. Such a quasi-potential would have to be constant within the shadow
and proportionate to X outside the shadow. Since X at the entry point to the
shadow will generally not be equal to X at the exit point, such a potential
will unavoidably give rise to a spurious impulse normal to the shadow bound-
ary at either the entry point, exit point, or both. Hence the integration from
exit point to entry point to allow for shadow effect must be made after Rp s
including short period terms, has been differentiated, i.e.,



M1 3R,

E?j se1, M
MO

must be used in the equations of motion, where M; and M; represent the
mean anomaly at exit and re-entry respectively and where El. denotes any
one of the orbital elements. For example, for the semi-major axis

M : M
d_a_lea&dM_F’“sa Lo
dt ~  an7w M " anm M

0 MO

E
cos E 1
FszQ
- v1- e? sin E , (16)
0 E

where E; and E; are obtained by solution of the quartic equation for the
intersection of the shadow by the orbit, as described in References 8 and 9.
In the notation of this paper, the quartic to be solved by iteration is

X = iRgqn = iPe s
or
1
rllla(cos E-e) + r; 2a(l-—e2)2 sin E = —\/a2(1-e cos E)?% - ae2 ,

where r; ; and r, 4 are elements of Rsq and a, is the radius of the earth.

Since E; and E; are functions of A',Q, and w, their time variation due
to change in these angles must be taken into account before Equation 16 is
integrated. In view of the intervention of the quartic, a numerical harmonic
analysis appears to provide the best method. The program which has been
written specifies as input F, the orbital elements at a reference epoch, and
the interval for harmonic analysis, and produces as output a Fourier series
of any specified number of terms for the variations of the Keplerian ele-
ments.

9211-d NI
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APPENDIX A
List of Symbols

semi-major axis of satellite orbit
right ascension
declination
eccentricity
inclination of the ecliptic
eccentric anomaly

inclination polynomials, defined by Equation 19, Refer-
ence 3 (or by unnumbered equation, Page 3, TN D-1126)

radiation pressure acceleration

true anomaly

disturbing body eccentricity polynomial, defined by
Equations 21, 24, Reference 3 (or Equations 8, 9,

TN D-1126)

satellite eccentricity polynomial, defined by Equations
6, 7, TN D-1126

disturbing body inclination subscript
angle of inclination to equatorial plane
disturbing body eccentricity subscript
unit vector {1,0,0}

integral part of (n-m)/2

2for m #0, 1 for m= 0

true longitude of the sun

mean anomaly

mass of disturbing body

9211-a N.L
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m order subscript, or secondary wave number, of
spherical harmonic

- n degree subscript, or primary wave number, of
N spherical harmonic
-
é‘ Q right ascension of ascending node
Z .
- w argument of perigee
p satellite inclination subscript
| Legendre polynomial
P Legendre associated polynomial
q satellite eccentricity subscript
- R disturbing function
Bp radiation pressure quasi-disturbing function
r radial coordinate
r position vector
S the cosine of the angle between the position vectors of

the satellite and the disturbing body with respect to the
earth's center

Tnmphj = cos [(n—Zp)a)-— (n-2h)w* = (n-2h+jM + m(Q-—Q.)]:

variable part of a term in the disturbing function
u argument, w + f

X satellite coordinate in a geocentric coordinate system
with the X axis pointing toward the sun

X (e) Hansen's eccentricity function (defined by Equation 21,
Reference 3)
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